Brannenburg: Geopark Wendelstein – Gipfelweg

Eine spannende Zeitreise durch 250 Millionen Jahre Erdgeschichte. Im Geopark Wendelstein können Sie Wissenswertes über die Entstehungsgeschichte der Alpen erfahren. Mehr als 30 Schautafeln vermitteln wie und wann die einzigartige Gebirgslandschaft der Alpen entstanden ist.

  • Gipfelweg (16 Tafeln)
  • Rundweg Wendelsteiner Almen (10 Tafeln)
  • Weg zur Wirtalm/Maier-Alpe (7 Tafeln)
  • Weg zur Mitteralm (7 Tafeln)

Alle vier Rundwege sind ausgeschildert und auch für weniger geübte Wanderer leicht begehbar.

Wegbeschreibung

Unterhalb des Wendelsteinkircherls führt der Pfad am Gebäude des Bayerischen Rundfunks vorbei in Serpentinen hinauf zum 1.838 m hohen Aussichtsplateau mit Gipfelkreuz, Wendelinkapelle und Sternwarte. Der Aufstieg über einen gut gesicherten Wanderweg dauert etwa 20 Minuten. Belohnt werden die Gipfelstürmer mit einem einmaligen 360°- Panorama.

Zurück zur Bergstation geht es entweder die gleiche Strecke oder über den eindrucksvollen Panoramaweg. Dieser zweigt kurz unter dem Wendelsteingipfel ab und führt über den sog. Ostgipfel zurück zum Bergbahnhof der Zahnradbahn. Einkehrmöglichkeit ist das Wendelsteinhaus.

Infomaterialien

agsdi-file-pdf

Brannenburg

Geopark Gipfelweg – keine Infomaterialien vorhanden!

Brannenburg: Geopark Wendelstein – Weg auf die Wirtsalm

Eine spannende Zeitreise durch 250 Millionen Jahre Erdgeschichte. Im Geopark Wendelstein können Sie Wissenswertes über die Entstehungsgeschichte der Alpen erfahren. Mehr als 30 Schautafeln vermitteln wie und wann die einzigartige Gebirgslandschaft der Alpen entstanden ist.

  • Gipfelweg (16 Tafeln)
  • Rundweg Wendelsteiner Almen (10 Tafeln)
  • Weg zur Wirtalm/Maier-Alpe (7 Tafeln)
  • Weg zur Mitteralm (7 Tafeln)

Alle vier Rundwege sind ausgeschildert und auch für weniger geübte Wanderer leicht begehbar.

Wegbeschreibung

Von der Bergterrasse vorm Wendelsteinhaus aus geht es entlang dem Wanderweg nach Bayrischzell, dann Richtung Bad Feilnbach durch das malerische Jenbachtal.

Die Erklärungen enden am Parkplatz zur Wirtsalm (im Sommer bewirtschaftet). Der Weg führt weiter bis nach Bad Feilnbach. Dort haben Sie Anschluss zur Wendelstein-Bus-Ringlinie.

Infomaterialien

agsdi-file-pdf

Brannenburg

Geopark Weg auf die Wirtsalm – keine Infomaterialien vorhanden!

Brannenburg: Geopark Wendelstein – Wendelstein Streifzüge – Geologie Rundweg

Woraus bestehen eigentlich die Berge? Warum gibt es Höhlen im Wendelstein? Und was hat es mit der Eiszeit auf sich? Dieser Weg zeigt Interessantes zur Geologie im Allgemeinen und zum Wendelstein im Speziellen.

Die Stationen zeigen die Unterschiede der Gesteine und machen die Höhen und Tiefen sowie die unvorstellbar großen Kräfte des Berges erlebbar. Die Inhalte fesseln geologisch Interessierte, Heimatverbundene und generell alle Neugierigen!

Gemeinsam mit der Wendelstein-Feldermaus Wendy kann man rätseln und knobeln. Wer gut aufpasst, die Augen aufhält und scharf nachdenkt, kann die Rätsel im Kinder-Quiz sicher gut lösen!

Wegbeschreibung

Unterhalb des Wendelsteinkircherls führt der Pfad am Gebäude des Bayerischen Rundfunks vorbei in Serpentinen hinauf zum 1.838 m hohen Aussichtsplateau mit Gipfelkreuz, Wendelinkapelle und Sternwarte. Der Aufstieg über einen gut gesicherten Wanderweg dauert etwa 20 Minuten. Belohnt werden die Gipfelstürmer mit einem einmaligen 360° Ausblick.

Zurück zur Bergstation geht es entweder die gleiche Strecke oder über den eindrucksvollen Panoramaweg (Trittsicherheit erforderlich!). Dieser zweigt kurz unter dem Wendelsteingipfel ab und führt über den sog. Ostgipfel zurück zum Bergbahnhof der Zahnradbahn. Einkehrmöglichkeit ist das Wendelsteinhaus.

Infomaterialien

agsdi-file-pdf

Brannenburg

Geopark Wendelstein – Wendelstein Streifzüge – Geologie Rundweg – keine Infomaterialien vorhanden!

Garmisch-Partenkirchen: „Geologie erleben“ – „Karibik und Eis“ auf dem Weg zur Zugspitze

© Bayerisches Landesamt für Umwelt (LfU Bayern)

Mit freundlicher Genehmigung.

Vielen Dank.

GeoAlpina – Roter Weg

Variante: Garmisch-Partenkirchen – Reintal – Zugspitze (Empfehlung der LfU Bayern)

Durch die Partnachklamm auf Deutschlands höchsten Gipfel läuft man durch Gesteine, die vor Jahrmillionen in einem tropisch-warmen Meer entstanden sind und später vom Eis geformt wurden.

Auf dem Weg zur Zugspitze findet man ca. 240 bis 210 Millionen Jahre alte Gesteine aus der Epoche der mittleren Trias bis zur Obertrias, die in unterschiedlichen Bereichen eines subtropisch-warmen Meeres abgelagert wurden – vom Strand über seichte Lagunen und unzähligen Riffen bis hinab in die Tiefen des Ozeans. Die Partnachklamm am Anfang dieser Etappe zeigt die Gesteine der Reifling-Formation, die vor etwa 240 Millionen Jahren am Rand des Meeresbeckens entstanden. Danach werden im Partnachtal jüngere Gesteine am Schindeltalschrofen und in der Hinterklamm durchwandert. Anschließend findet man bis zum Gipfel ein anderes Gestein, das vom Wettersteingebirge seinen Namen hat: der Wettersteinkalk. Er entstand im flachen Meer als es nur so von Meerestieren und Riffbewohnern wimmelte. Nach deren Tod sanken die kalkige Schalen auf den Boden und türmten sich allmählich zu riesigen Kalkschichten auf. Aber auch Spuren der letzten Eiszeit und des Klimawandels sind bis zum Gipfel der Zugspitze erkennbar.

Wegbeschreibung

 In der nachfolgenden Beschreibung wird auf einige geologische Besonderheiten, zum Teil entlang der Etappe R45 der Via Alpina, eingegangen. Zu den Begriffen „Geotop“, „GeoPunkt“  und „GeoAussichtspunkt“ gibt es zusätzliche Wegpunkte, in denen auch die Geologie erklärt wird. Diese Wegpunkte werden weiter unten sowie in der Karte angezeigt und können ausgedruckt werden. Die Geotope können außerdem mit weiteren Informationen im UmweltAtlas Bayern des Bayerischen Landesamts für Umwelt recherchiert werden: https://www.lfu.bayern.de/geologie/geotoprecherche.

 

Paläogeographie

Die ältesten Gesteine auf dem Weg zum Gipfel sind über 240 Millionen Jahre alt. Zu dieser Zeit gab es einen Großkontinent Pangäa. Vom Äquator in Richtung Norden dehnte sich ein Ozean, genannt die Tethys, mit zahlreichen Buchten immer weiter bis in den heutigen Alpenraum aus. Dort waren die damaligen klimatischen Bedingungen vergleichbar mit denen von heute in der Karibik bzw. am Great Barrier Reef vor der Ostküste Australiens. Am Rand des Schelfmeeres zum Beckenbereich des Tethys-Ozeans entwickelte sich ein Riffgürtel und dahinter lagen Lagunen. Hier lebten Kalk abscheidende Organismen wie Algen, Schwämme und Korallen. In den tieferen Ozeanbereichen wurden feiner Kalkschlamm oder kieselige Ablagerungen sedimentiert. In der Obertrias kam es vom Festland her zu Schuttanlieferungen in das Meer, die das Wachstum der Riffe unterbrachen. Diese unterschiedlichen Bereiche bzw. Gesteine durchläuft man auf dem Weg zur Zugspitze.

 

Geologische Zeittafel

Die geologische Zeittafel zeigt die Abfolge der Schichten und die Geo-Punkte, die auf der Wanderetappe durchquert werden, und das Alter ihrer Ablagerung. In der Trias gab es nebeneinander verschiedene Ablagerungsräume mit unterschiedlichen Umweltbedingungen, wie Flachmeer oder tiefes Ozeanbecken. So entstanden teilweise zur selben Zeit die verschiedenartigen Gesteinsausprägungen (Fazien) der Wetterstein-, Reifling- und Partnach-Formation.

 

Start

Vom Skistadion startet man nach Süden Richtung Partnachklamm. Nach etwa einer halben Stunde erreicht man die Partnachklamm, eines von Bayerns schönsten Geotopen.

Sicherheitshinweis

Die hier beschriebenen Wege verlaufen teilweise in hochalpinem Gelände. Sie sind an manchen Stellen absturzgefährlich und ab und zu sind einfache Kletterstellen (mit Drahtseilsicherungen) zu meistern. Daher ist für bestimmte Abschnitte Trittsicherheit, Schwindelfreiheit und alpine Bergerfahrung Voraussetzung. Etappenweise sind viele Höhenmeter sowie lange Strecken zu bewältigen. Eine gute Kondition ist deswegen genauso unerlässlich wie die richtige Bergausrüstung.

Die meisten Wegabschnitte können nicht ganzjährig gegangen werden.

Bitte informieren Sie sich über Schwierigkeiten, etwaige Gefahren und den aktuellen Zustand der Route, zum Beispiel auf den Internet-Seiten der Via Alpina oder beim Deutschen Alpenverein.

Die Begehung der Touren erfolgt auf eigene Gefahr.

Geologische Sehenswürdigkeiten
Geotop "Partnachklamm"

Beim Klammeingang erläutert eine Infotafel die Entstehung eines der schönsten Geotope Bayerns. Die Klamm ist 700 Meter lang, die senkrechten Wände reichen bis zu 86 Meter in die Höhe. Die  Kalke der Partnachklamm wurden vor etwa 240 Millionen Jahren am Beckenrand eines Ozeans abgelagert und gehören zur Reifling-Formation. Im Verlauf der alpinen Gebirgsbildung wurden sie gefaltet und im Bereich der Partnachklamm herausgehoben.  Nach dem Rückzug des Eises im Bereich von Graseck vor ca. 12.000 Jahren, schnitt sich die Partnach senkrecht in die harten Kalkbänke der Reifling-Formation ein, wodurch die eindrucksvolle Klamm entstand).

Reifling-Formation

Die Kalksteinabfolgen bestehen aus dünn- bis seltener mittelbankigen, zumeist hellgrau anwitternden, verfestigten Kalkschlamm (Mikriten). Die Bankoberseiten sind wellig und unregelmäßig („Reiflinger Knollenkalke“), können daneben auch ebenflächig sein („Reiflinger Bankkalke“). Sie wurden vor etwa 244 – 237 Millionen Jahren abgelagert, ungefähr zeitgleich mit dem Wettersteinkalk, den wir aber erst später bei der Bockhütte erreichen und erklären. Die Reifling-Formation wurde nicht im  Flachwasser sondern am Rand des Tethys-Ozeanbeckens gebildet.

Geotop "Partnach-Formation"

Vor etwa 239 bis 236  Millionen Jahren kam es zur Ablagerung von feinkörnigen bis tonigen Sedimenten, aus denen die Tonmergel- und Kalksteine der Partnach-Formation entstanden. Sie wurden zeitgleich mit den Gesteinen der Reifling- und Wetterstein-Formation abgelagert, allerdings in tieferen, sauerstoffarmen Beckenbereichen des Tethys-Meeres, worauf die dunkle Gesteinsfarbe als auch feinverteilte Pyrit-Würfel schließen lassen. Eine Grafik zeigt die unterschiedlichen Ablagerungsräume der Partnach-, Reifling- und Wetterstein-Formation.

Diese Gesteine der Partnach-Formation sind etwa 200 Meter nach dem südlichen Ausgang der Klamm am gegenüberliegenden Ufer der Partnach zu sehen. Der Aufschluss ist als Geotop im UmweltAtlas Bayern gelistet.

GeoPunkt "Schindeltalschrofen"

Nach den Gesteinen der Partnach- und Reifling-Formation erreichen wir nach etwa 2 Kilometern entlang der Partnach die jüngeren Gesteine des Schindeltalschrofen, bestehend aus Hauptdolomit. Der Hauptdolomit wurde unter subtropischen Bedingungen vor etwa 230 bis 215 Millionen Jahren in einem Wattenmeer abgelagert.

Die steilen Felshänge, bizarren Türmchen und mächtigen Schuttablagerungen des Schindeltalschrofens auf der linken, anderen Seite der Partnach fallen sofort auf. Diese Formen und Ablagerungen sind charakteristisch für den Hauptdolomit, der kurz darauf auch rechts direkt an der Straße zu sehen ist. Typisch ist seine brüchige Struktur und entsprechend starke Zerklüftung. Dadurch ist der Hauptdolomit verwitterungsanfällig und bildet große Schuttfächer.

Kurz nachdem die Hauptdolomithänge passiert wurden, geht es nun in zwei Kehren bergauf. Man verlässt das Tal der Partnach bis man nach weiteren zwei Kilometern die Hinterklamm erreicht.

GeoPunkt "Hinterklamm"

Hier hat sich die Partnach tief in die Schichten des Raibler Kalkes der Raibl-Formation eingeschnitten. Die Raibl-Formation repräsentiert eine flachmarine zyklische Abfolge aus Meeresrückzug (festländisch beeinflusste Sedimentation mit Ton- und Sandsteinen) und -vorstoß (Kalke) mit zum Teil abgeschnürten Becken, in denen bei subtropischem Klima das Meerwasser eindampfte. Auch hier herrschten Bedingungen wie in der heutigen Karibik. Es entstanden örtlich Gips- und Dolomitgesteine. Wo später Wasser den Gips aus dem Gestein löste, blieben Dolomitbreccien und löchrige Rauhwacken zurück.

Die Kalksteine der Hinterklamm erscheinen durch die Beimischung von organischem Material stellenweise etwas dunkler als der helle Wettersteinkalk, der die meisten umliegenden Gipfel aufbaut. Die Raibl-Formation entstand im älteren Abschnitt der Obertrias (Karnium) von etwa 236 bis 227 Millionen Jahren. Sie ist somit älter als der Hauptdolomit, aber jünger als der Wettersteinkalk. 

Von der Hinterklamm geht es weiter zur Bockhütte. Kurz vor der urigen Bockhütte mündet die Via Alpina vom Schachen kommend in den Weg. Nun sind wir im Wettersteinkalk angekommen.

Wettersteinkalk

Das Gestein, aus dem die meisten Gipfel im Wettersteingebirge bestehen, wird nach diesem Gebirge „Wettersteinkalk“ genannt. Es wurde in einem flachen Meer vor etwa 244 bis 232 Millionen Jahren gebildet. Der Wettersteinkalk entstand südlich seiner heutigen Lage in einem tropisch bis subtropischen Meer aus den versteinerten Schalen abgestorbener Lebewesen und Skelettresten der ehemaligen Riffbewohner. Mit der Zeit türmten sich Schalen über Schalen, die untersten wurden meist bis zur Unkenntlichkeit zusammengepresst. Manchmal aber blieben die ehemaligen Meeresbewohner noch als Fossilien erkennbar. Im Wettersteinkalk gibt es beispielsweise Reste von riffbildenden Grünalgen und Blaualgen. Die bis 1.500 Meter dicken Schichten bauen den größten Teil des Wettersteingebirges auf. Der Wettersteinkalk gehört mit dem magnesiumreicheren Wettersteindolomit zur Wetterstein-Formation.

Der Weiterweg auf der offiziellen Trasse der Via Alpina verläuft nun im Reintal, einem durch Gletscher geformten Trogtal. Wir sind nun in der Eiszeit angekommen. Auf beiden Seiten der Partnach ragen die teilweise senkrechten Felswände aus Wettersteinkalk empor. Durch die Steilheit der Wände kommt es zur Erosion in den Felswänden und Gipfelpartien und zur Anhäufung von Material im Bereich des Talbodens. Auf dem Weg sind daher Massenbewegungen, wie Hangschutt, Murkegel, Schuttkegel, Bergstürze und Schwemmfächer zu sehen. 

Einige Sturzmassen im Reintal haben sogar „Berühmtheit“ erlangt.

GeoPunkt "ehemalige Vordere Blaue Gumpe"

Dieser um das Jahr 1800 durch einen Bergsturz aus Wettersteinkalk aufgestaute See – einst das landschaftliche Juwel des Reintals mit glasklarem blauem Wasser – wurde im August 2005 während eines zweitägigen Unwetters vollständig verfüllt. So ist kleine Paradies, das durch einen Bergsturz entstanden ist, durch eine Sedimentschüttung wieder verschwunden.

GeoPunkt "Bergsturz Steingerümpel"

Bei diesem Bergsturz, ebenfalls aus Gesteinen des Wettersteinkalks, donnerten vor etwa 500 Jahren 2,8 Millionen Kubikmeter Fels ins Tal und stauten damals ebenfalls die Partnach zu einem See, der ehemaligen Hinteren blauen Gumpe, auf.

Mehr zu Massenbewegungen ist zu erfahren unter: https://www.lfu.bayern.de/geologie/massenbewegungen.

Kurz vor der Reintalangerhütte kommen wir zur nächsten geologischen Besonderheit. Wir sind zwar immer noch im Wettersteinkalk, also in der Karibik, erreichen aber wieder die Eiszeit.

GeoPunkt "Endmoräne"

Hier quert die Via Alpina eine späteiszeitliche Endmoräne („Reintalanger-Stand“). Im Gegensatz zum heutigen Schneeferner, der das oberste Zugspitzplatt bedeckt, reichte der Partnachgletscher vor etwa 11.000 Jahren noch bis hier herab. Der Gletscher häufte am Rand den mitgeführten Gesteinsschutt in Form von Moränenwällen auf. Moränenablagerungen bestehen aus unsortierten Gesteinsmaterial verschiedener Korngrößen bis zu großen Blöcken. Im Moränenwall am Weg ist dies gut sichtbar. Am Höchststand der letzten Eiszeit (Würm) vor etwa 20.000 Jahren wurde das Wettersteinmassiv von zwei großen Ferneisströmen umflossen, dem Werdenfelser Eisstrom im Osten und dem Fernpass-Eisstrom im Westen. Das Reintal selbst wurde aber nur durch die lokalen Gletscher der Zugspitze und der seitlichen Kare überformt.

Vom Moränenwall ist es schließlich nicht mehr weit zur Reintalangerhütte. Kurz nach der Hütte teilen sich die Wege, die später wieder ineinander münden. Beide führen zum Talschluss des Reintals, zum Oberen Anger.

Tipp: Geotop Partnachursprung

Folgt man kurz nach der Reintalangerhütte Richtung Zugspitze dem rechten Pfad, kommt man zum Partnachursprung. Der Partnachursprung ist eine der größten Karstquellen in den Bayerischen Alpen. Sie liegt im Wettersteinkalk und –dolomit. Das Einzugsgebiet ist das höchstgelegene Karstgebiet Deutschlands, das Zugspitzplatt. Bei der Lösung des in der Luft enthaltenen Kohlenstoffdioxids durch Regentröpfchen entsteht Kohlensäure. Durch die im Niederschlagswasser enthaltende Kohlensäure, die in Fugen, Klüfte und Spalten eindringt, wird der Kalk gelöst (Kohlensäureverwitterung) und ein unterirdisches System von Hohlräumen entsteht (Verkarstung). Durch zahlreiche Risse und Spalten dringt das Niederschlags- und Schmelzwasser in das Karstsystem ein, fließt durch unterirdische Kanäle ab und tritt beim Partnachursprung zutage. Die Quelle ist als Geotop im UmweltAtlas Bayern gelistet.

Der Obere Anger wird bis heute von unterschiedlichen Massenbewegungen geformt, wie Lawinenabgängen und Steinschlägen. Hier ereignete sich 1920 ein großer Felssturz, der aber bereits wieder dicht bewachsen und nur aufgrund seines Reliefs noch erkennbar ist.

Der Weg steigt nun steil bis zur Knorrhütte an. Typisch für die Verkarstung sind nicht nur Höhlensysteme wie beim Partnachursprung erwähnt sondern auch Karrenfelder an der Oberfläche, die am Rand des Weges zur Knorrhütte, besonders ausgeprägt aber am Zugspitzplatt erkennbar sind. Karren sind mehr oder weniger parallele Rinnen und Rippen in der Gesteinsoberfläche. Bei Niederschlag wird in den Rinnen Kalk gelöst, so dass das Relief immer größer wird. Sogar im Anbau der Knorrhütte können Karren studiert werden. Hier hat man die Hütte um die Felsen gebaut.

Von der Knorrhütte folgt man nun nicht mehr der Via Alpina nach Ehrwald sondern den Wegweisern zum Sonn-Alpin bzw. zur Zugspitze. Gleich hinter der Hütte wird es nochmals kurz steil, dann zieht der Steig über die weitläufige „Mondlandschaft“ des Zugspitzplatts zum flachen Karboden mit der Seilbahnstation Sonn-Alpin.

Der Weg verläuft auch weiterhin bis zum Gipfel im Wettersteinkalk. Von Sonn-Alpin könnte man auch die Seilbahn zum Gipfel nehmen. Zu Fuß geht es von der Station über einen steilen Geröllhang zum Schneefernerhaus (http://www.schneefernerhaus.de). Hier ist die Umweltforschungsstation Schneefernerhaus (UFS), das Zentrum für Höhen- und Klimaforschung in Bayern, beheimatet.

Schon gewusst?

Aufgrund der Klimaerwärmung wird der dauernd gefrorene Untergrund (Permafrost) immer weiter auftauen. Mehr Rutschungen, Steinschläge und Felsstürze sind die Folge. Um Veränderungen des Permafrosts dokumentieren zu können, wird der Zugspitzbereich untersucht, unter anderem von Geologen des Landesamts für Umwelt. Zu diesem Zweck wurden in einer Bohrung am Gipfel und in einem Tunnel beim Schneefernerhaus Messpunkte installiert. Die Erkenntnisse von der Zugspitze können auch auf andere Gipfel der Nordalpen übertragen werden. Mehr zum Thema Permafrost erfahren Sie unter: https://www.lfu.bayern.de/geologie/permafrost.

Am Schneefernerhaus beginnen die Felsen. Der Weg ist jetzt stellenweise mit Drahtseilen gesichert und führt dann zum Grat. Hier stoßen wir auf interessante Muster.

GeoPunkt "Ringstrukturen im Wettersteinkalk"

Der Wettersteinkalk wurde vor etwa 240 Millionen Jahren in einem subtropisch-warmen Meer mit Lagunen und Riffen gebildet. Die Landschaft ähnelte der in der heutigen Karibik. Hier am Grat ist der Wettersteinkalk als Riffkalk ausgebildet. Die Riff-Hohlräume wurden später mit Calcit verfüllt und zeigen dezimetergroße, runde Strukturen.

 Weiter geht es über den Grat zum Zugspitzgipfel mit seinem berühmten Gipfelkreuz und dem Münchner Haus, in dem man bei vorzeitiger Reservierung übernachten kann. Vom Gipfel hat man bei schönem Wetter einen wunderbaren Rundum-Blick.

GeoAussichtspunkt "Eibsee-Bergsturz"

Bayern hatte einen 3000er! Bis sich vor etwa 3.750 Jahren der größte Bergsturz in Bayern ereignete. Damals brach der vermutlich 3.050 Meter hohe Gipfel der Zugspitze urplötzlich ab. Der Blick vom Gipfel zum Eibsee erlaubt eine gute Übersicht über die Ausdehnung der Eibsee-Bergsturzmassen. Ungeheure Felsmassen schossen ins Tal und türmten sich so hoch wie zehnstöckige Häuser!  Noch heute zeugen riesige Felsblöcke von diesem Ereignis.

Tipp

Ein geologischer Wanderweg von Grainau zum Eibsee führt durch das Bergsturzgelände.

GeoAussichtspunkt "Gletscherblick"

Die weitläufige Einmuldung des Zugspitzplatts wurde vor allem durch die eiszeitlichen Gletscher geformt. Vor 11.000 Jahren strömte noch ein gewaltiger Gletscher von der Zugspitze talwärts. Er schmirgelte den Untergrund regelrecht platt – so erklärt sich der Name des Zugspitzplatts. Zeugen der früheren Gletscherausdehnung sind Moränen und Gletscherschliffe. Letztere entstanden als schuttbeladenes Eis über die Kalksteinrücken hinweg floss, wobei es seine schleifende und polierende Wirkung entfaltete. Es blieben Rundhöcker und polierte Flächen mit typischen Schrammen zurück, die die Bewegungsrichtung von am Grund des Eises eingefrorenen Steinen anzeigen.

Mit dem Einsetzen der heutigen Warmzeit begann der Gletscher immer mehr zu tauen. Insbesondere in den letzten Jahrzehnten wurden große Teile des obersten „Plattes“ eisfrei. Hier befinden sich mit dem Nördlichen und dem Südlichen Schneeferner die spärlichen Reste des einstigen Partnachgletschers. Der Nördliche Schneeferner ist als Geotop im UmweltAtlas Bayern gelistet. Die ungewöhnlich schnelle Klimaerwärmung beschleunigt das Auftauen rasant: In wenigen Jahrzehnten ist die Zugspitze ohne Gletschereis!

Nach der tollen Aussicht und einer Einkehr geht es zurück ins Tal. Falls über das Höllental abgestiegen wird, kann noch ein Abstecher zum ehemaligen Bergwerk bei den Knappenhäusern gemacht werden.

Schon gewusst?

Nach Funden von Bleiglanz und Wulfenit (Gelbbleierz) wurde 1826 im Höllental unterhalb der Zugspitze Deutschlands höchstgelegenes Bergwerk eröffnet. Während des 1. Weltkriegs war Molybdän für die Stahlproduktion sehr gefragt; 1918 wurde der Betrieb eingestellt. Heute erinnern noch die Knappenhäuser an den Bergbau. In der Gesteinssammlung des Landesamts für Umwelt sind seltene Erzbrocken aus der Anfangszeit des Bergbaus erhalten.

Das Bergwerk im Höllental wurde bereits 1840 erstmals von amtlichen bayerischen Geologen im Rahmen der „Geognostischen Untersuchung des Gebirgszuges zwischen Werdenfels und dem Bregenzer Walde“ besucht. Tagebücher und Skizzen davon sind im Archiv des Landesamts für Umwelt erhalten. 1843 veröffentlichte der Königliche Oberberg- und Salinenrath Christoph Schmitz eine Schrift mit Kartenbeilage – die älteste rohstoffgeologische Karte von Bayern.

Infomaterialien

agsdi-file-pdf

Garmisch-Partenkirchen

„Geologie erleben“ – „Karibik und Eis“ auf dem Weg zur Zugspitze – keine Infomaterialien vorhanden!

Garmisch-Partenkirchen: Geologischer Lehrpfad „Die Steine des Alpenraums“

Der Geologische Lehrpfad „Die Steine des Alpenraums“ ist ein Projekt des Fremdenverkehrsvereins Garmisch-Partenkirchen e.V., das ausschließlich aus Eigenmitteln des Vereins sowie Spenden und ohne offizielle Finanzierung im Oktober 2015 eröffnet wurde.

Der Lehrpfad verläuft auf 1,6 km Länge entlang der Partnach auf einer reizvollen Promenade zwischen Bahnhofstraße und Olympia-Skistadion.

Der Lehrpfad soll den Besuchern einen Einblick in die Welt der Gesteine aus dem gesamten Alpenraum (Frankreich, Italien, Schweiz, Österreich, Deutschland) aus zwölf alpinen Regionen geben. Zu jeder Jahreszeit, für Jung und Alt, vermittelt er Wissen bei gleichzeitiger Erholung in der Natur. Die Schönheit der Steine und die vielen Informationen sollen das Interesse wecken, interessante Steine rund um Garmisch-Partenkirchen selbst zu entdecken

Der Lehrpfad zeigt auch viele geologische Besonderheiten des Werdenfelser Landes und der angrenzenden Regionen. So wurde der „Mittenwalder Marmor“ Jahrhunderte lang für repräsentative Bauten in München verwendet. Dank der letzten Eiszeit findet man in Isar, Loisach und den Zulaufbächen „zugereiste“ Steine aus dem Alpenhauptkamm. Im angrenzenden Tirol hat die Gewinnung und Verarbeitung von Ölschiefer lange Tradition. Diese Gesteinsart wird zur Herstellung von Ichthyol verwendet, woraus dann die weiteren medizinischen Pflegesubstanzen gewonnen werden. Markante Fundstellen des seltenen und sehr farbigen Mesozoischen Radiolarits der Alpen gibt es am Kramer und im Ammergebirge. Und was hat es mit dem Wetzstein auf sich? Die Wetzstein-Herstellung war viele Jahre Haupterwerb in Unterammergau und Ohlstadt. Eine Schautafel zeigt die einzelnen Fertigungsstufen vom rohen Stein bis zum fertigen Wetzstein.

Aktuell sind insgesamt über 100 Exponate aufgestellt. 60 unterschiedliche Gesteinsarten geben einen genauen Überblick über die Gesteinswelt der Alpen. Alle Steine wurden von den Original-Fundstellen aus dem gesamten Alpenraum mit großem Aufwand herbeigeschafft. Schon heute ist der Geologische Lehrpfad nach Anzahl der Exponate der größte seiner Art in Deutschland.

Die ältesten Steine sind über 500 Mio. Jahre alt und unser „Schwerster“ bringt rund 3,5 Tonnen auf die Waage. Die kleineren Exponate wurden auf Säulen gesetzt, um sie ins rechte Licht zu setzen. Als Besonderheit wurde der „Edelstein-Stein“ aufgestellt – er zeigt Edelsteine aus allen fünf Kontinenten.

Aus den beiden derzeitigen Tunnelprojekten im Ost-Alpenraum – Brenner Basistunnel und Umfahrung Oberau – sind die unterschiedlichen Gesteinsarten in Gabionen ausgestellt. Polierte Steintafeln an der Ufermauer der Partnach geben einen Einblick in das „Innenleben“ der Steine und ihre herrlichen Schattierungen und Muster.

Insgesamt zwölf Informations- und Schautafeln beschäftigen sich mit der Geologie des Alpenraums sowie dem Thema „Steine“. Besondere Aufmerksamkeit verdient die Beteiligung aller BOTA-Orte der Marketing-Kooperation „Best of the Alps“ am Geologischen Lehrpfad. Eine Informationstafel gibt Auskunft über den Zusammenschluss der bekanntesten Wintersportorte in den Alpen. Jeder BOTA-Ort ist mit einem regional typischen Gestein vertreten.

Die Beschriftung der Steine umfasst folgende Informationen: Name des Steins, Herkunft, Alter, Härtegrad und individuelle Besonderheiten. Dazu der Name des Spenders, wobei bislang über 60 Institutionen und Privatpersonen als Spender gewonnen werden konnten.

Textquelle: Fremdenverkehrsverein Garmisch-Partenkirchen e.V. (Stand: Juli 2023)

Infomaterialien

agsdi-file-pdf

Die Steine des Alpenraums

Faltblatt zum Geologischen Lehrpfad in Garmisch-Partenkirchen

Grainau: Geologische Wanderung zum Eibsee

Auf geologischen Pfaden das Zugspitzdorf Grainau erleben.

Die Landschaft um Grainau bietet ein breites Spektrum an geologischen Sehenwürdigkeiten. Erkunden Sie die Landschaft eines Dorfes, welches durch einen Bergsturz vor ca. 4.000 Jahren nachhaltig geprägt wurde.

Die Wanderung beginnt im Kurpark der Gemeinde. Unterhalb des großen Felsblockes vor dem Rathaus steht die erste Infotafel. Der Weg führt vorbei am Rosen- und Badersee, über die Breitla, Frenzl, Radschuh weiter zur Umrundung des Eibsees bis zum Frillensee.

Die Gehzeit beträgt ca. 3,5 bis 4 Stunden.

In der Tourist-Information gibt es den kostenlosen Führer mit allen Erklärungen.

Wegstationen
Station 1: Felsblock am Rathaus

Aus dem Bayerischen Schneekar unter dem Zugspitzgipfel ging vor rund 3700 Jahren ein riesiger Bergsturz nieder. Die ausgebrochene Felsmasse stürzte in das Eibsee-Becken und das Loisachtal und brandete am Gegenhang des Kramer-Gebirgsstockes bis etwa 100 m hoch. Am Bergrücken Zirmerskopf— Höhenrain wurde ein großer Teil der Sturzmasse nach Osten bis zum Westrand des Talkessels von Garmisch-Partenkirchen abgelenkt; als gleitungsfördernder Horizont wirkte dabei eine späteiszeitliche Seeton-Decke. Die Bergsturzmasse nimmt eine Fläche von rund 15 km2 ein; ihre Mächtigkeit schwankt zwischen wenigen Metern und über 50 m. Die Reichweite der Sturzbahn beträgt rund 10 km, das Volumen der Sturzmasse rund 300–400 Mio. m3. Damit handelt es sich um den größten Bergsturz der Bayerischen Alpen. Die Bergsturzmasse weist ein unruhiges Kleinrelief auf. Es handelt sich um eine stark gegliederte, von einem teilweise intensiven Wechsel von hügeligen Aufragungen und dazwischen liegenden Senken gebildete Felstrümmerlandschaft. Diese verleiht – im Zusammenwirken mit zwischengestreuten Auen (See- und Bachablagerungen) – dem Ortsbereich von Grainau sein vielfältiges, typisches Gepräge. Auch der Hügel, auf dem das Rathaus steht, stellt ein Relikt des seinerzeit katastrophalen Ereignisses dar. Die eindrucksvollen Blöcke bestehen aus hellem Wettersteinkalk. Der große Block, vor dem der Wanderer steht, lässt auch erahnen, mit welcher Wucht die Massen zu Tale donnerten.

Text: Dipl.-Geol. Johann-Peter Orth

Station 2: Brücklesbach-Ursprung

Hier, am Ostfuß des bewaldeten Hinterbichel-Rückens, tritt ein Grundwasserstrom aus der Bergsturzmasse zutage. Unter dem Pflaster der Waxensteinstraße liegen fünf Quellen; ihre Schüttung ist sehr gleichmäßig und auf 50–100 l/s zu veranschlagen. Die Wassertemperatur beträgt 7-10 °C (im Winter niedrig, im Sommer hoch). Mit hoher Wahrscheinlichkeit handelt es sich um den unterirdischen Abfluss des 22 m höher gelegenen Badersees (Station 4), worauf nicht nur die Lagegegebenheiten, sondern auch der saisonale Temperaturgang (siehe Diagramm auf der folgenden Seite) hindeuten: Das den Badersee speisende, gleichmäßig temperierte Grundwasser unterliegt beim Durchströmen des Sees im Sommer einer leichten Erwärmung, im Winter dagegen einer Abkühlung.

Der Austritt wird verursacht durch den Staueffekt einer Seeton- Decke, die bei der Anlage von Baugruben im Ortsbereich von Grainau immer wieder aufgeschlossen wird. Der Brücklesbach nimmt den vom Plateau der Neuneralm kommenden Alplebach (Quellwasser) auf und mündet im Untergrainauer Feld in den Krepbach.

Text: Dipl.-Geol. Johann-Peter Orth

Station 3: Rosensee und Baderseewald

Rechts unterhalb des Wanderweges ist das grünklare Wasser des Rosensees zu erkennen. Der See liegt auf Privatgrund und ist nicht öffentlich zugänglich. Seine maximale Fläche beträgt ca. 3.500 m2, die größte Wassertiefe etwa 4 m (bei hohem Wasserstand). Das Stillgewässer liegt vollständig in der Bergsturzmasse; die Ufer und Seegrund bildenden Sturzblöcke sind gut zu erkennen. Es herrscht Analogie zum Badersee (Station 4): Die Speisung erfolgt allein durch Grundwasser, oberirdische Zu- und Abflüsse fehlen; aufgrund der Lage in einer oberflächenabflusslosen Mulde ist von einem Blindsee zu sprechen. Ungewöhnlich ist die hohe Schwankung des Wasserspiegels: Sie beträgt bis etwa 2 m. Offenbar ist der Ablauf durch die knapp östlich beginnende Seetondecke gestaut (siehe Station 2). Bei Niedrigwasserstand zerfällt der See in zwei Teilflächen. Bei mittlerem und hohem Wasserstand lässt sich beobachten, wie der Grundwasserstrom an der westlichen (vom Betrachtungspunkt aus linken) Ecke in den See eintritt.

Die unruhige Geländeoberfläche des bewaldeten Hinterbichel- Rückens, durch die der Weg führt, ist charakteristisch für grobblockige Bergsturz-Trümmermassen (zur Entstehung siehe Station 1). Mulden und Aufragungen wechseln einander in rascher Folge ab. Wie an zahlreichen Öffnungen im Waldboden zu erkennen, ist der Untergrund von Kleinhohlräumen durchzogen und hoch durchlässig; alles Niederschlagswasser versickert flächenhaft, ohne oberirdische Rinnsale zu bilden.

Text: Dipl.-Geol. Johann-Peter Orth

Station 4: Badersee

Der See weist eine Fläche von 12.810 m2 auf (Länge 177 m, Breite 131 m, Umfang 580 m). Die groben Bergsturzblöcke prägen das morphologische Erscheinungsbild des Sees und seines Umfeldes. Der größte Block bildet im Ostteil des Sees eine kleine, bewachsene Insel. Zwischen den Blöcken des Seegrundes liegt heller Sand. Die mittlere Wassertiefe liegt im Westteil des Seebeckens bei 2–3 m, im Ostteil bei 5–6 m; die maximale Tiefe beträgt 8 m (Senke zwischen Insel und Südufer). Die Sohle des Sees besteht im Westteil großteils aus Sand, im Ostteil vorwiegend aus Blöcken. Den Untergrund des Seebeckens bilden feinkörnige Sedimente, die abdichtend wirken.

Ebenso wie der Rosensee (Station 3) weist der Badersee oberirdisch weder Zu- noch Abfluss auf. Er ist Teil eines starken Grundwasserstrom- Systems, das die Bergsturz-Trümmermasse des Hinterbichels durchfließt. Man kann beobachten, wie das Grundwasser am Westufer an mindestens drei Stellen aus Blockwerk in den See eintritt. Dagegen sind die Ablaufstellen kaum auszumachen. Der Abfluss durchströmt teilweise den Rosensee und tritt am Brücklesbach- Ursprung (Station 2) wieder zutage. Im Gegensatz zum Rosensee schwankt der Wasserstand des Badersees nur um etwa 0,7 m.

Mehrjährige Messungen an zwei Quellen am Westufer des Sees ergaben eine mittlere Wassertemperatur von 8,3 °C bzw. 8,7 °C (Minimum 7,9 °C, Maximum 9,1 °C). Die ganzjährig niedrige Temperatur des Sees erklärt sich aus der ständigen, starken Durchströmung mit kühlem Grundwasser. Erwärmung des Seewassers im Sommer und Abkühlung im Winter findet nur in unbedeutendem Umfang statt. Deshalb friert der See nie zu, ist aber auch als Badesee ungeeignet. Auch die außerordentliche Klarheit und hohe Sichttiefe des Sees resultiert aus der ganzjährigen Durchspülung mit nährstoffarmem Grundwasser bei gleichzeitigem Fehlen von Oberflächenzufluss, der Trübungspartikel und organische Stoffe eintragen könnte.

Vor allem im tiefen Ostteil finden sich am Seegrund ausgedehnte Rasen von Wasserpflanzen, bestehend aus Armleuchteralgen (Characeen), Moos und Laichkraut. Die zu den Grünalgen rechnenden Characeen bilden Indikatoren für saubere, nährstoffarme Gewässer. Ihr massenhaftes Vorkommen wird als Mitursache für die reizvolle Smaragdtönung des Sees erachtet. Einige Meter westlich der Insel liegt auf einem Felsblock in einer Wassertiefe von rund 5 m die lebensgroße Bronzeguss-Skulptur einer Nixe. Sie lässt sich vom Boot aus gut betrachten. Mitte des 19. Jahrhunderts ließ die Gattin des damaligen See-Eigentümers Staatsrat Rudhart von Schwaigwang dieses Kunstobjekt anbringen. Es war nicht zuletzt diese Skulptur, die dem See zu seiner Bekanntheit verhalf. Der Name des Sees rührt von den ursprünglichen Besitzern her, der Familie Bader aus Grainau.

Text: Dipl.-Geol. Johann-Peter Orth

Station 5: Vorderbrand / Breitla

Hier hat der Rohrbach (Station 6) im Laufe von Jahrtausenden aus dem mitgeführten Schotter einen Schwemmkegel aufgeschüttet; seine Spitze liegt an der Christlhütte. Die leicht gewölbte, durch trockengefallene Abflussrinnen nur unwesentlich gegliederte Oberfläche des Schwemmkegels zeigt einen im Großen ruhigen Verlauf, der sich deutlich unterscheidet vom unruhigen Relief der umgebenden Bergsturz-Ablagerungen. Die glatte Oberflächengestalt und der relativ tiefgründige Boden ermöglichten eine landwirtschaftliche Kultivierung (Nutzung als Grünland). Die Schwemmkegel- Spitze liegt im Bereich einer oberirdischen Wasserscheide.

Es existierte eine Phase, in welcher der Bach nicht über die Breitla und zum Krepbach, sondern nach Obergrainau, also südlich des Hinterbichel-Rückens floss. Davon zeugt der ruhige Sohlverlauf der flach profilierten Talrinne. Im heutigen Trockental zwischen Christlhütte und Obergrainau verlaufen die Trasse der Zahnradbahn und ein Fahrweg. Der Talboden trägt die Flurbezeichnung Obergrainauer Feld, welche auf die einstige Nutzung als Ackerland hinweist (heute Weidefläche der Obergrainauer Landwirte). – Bei dem umzäunten Gebäude am Waldrand handelt es sich um den Hochbehälter der Grainauer Wasserversorgung.

Text: Dipl.-Geol. Johann-Peter Orth

Station 6: Rohrbach und Christlhüttenquelle

Der Rohrbach kommt aus der Zuggasse (Graben an der NW-Flanke der Waxensteinkette) herab. Seine obersten Äste werden gespeist aus einem lang gestreckten Quellhorizont im Muschelkalk-Sockel der Wand (Station 12). Bei starkem Gewitterregen bilden sich in den nackten Felsflanken Sturzbäche, die große Mengen an Gesteinsschutt mitreißen und am Wandfuß ablagern. So finden sich im oberen Abschnitt der Zuggasse mächtige steinige Wülste niedergegangener Muren. Mit Austritt aus der Zuggasse versickert bei Niedrig- und Mittelwasserabfluss der Bach vollständig im kiesigen Untergrund. Dauerhafte Wasserführung besteht zunächst wieder ab der Christlhüttenquelle (siehe unten). Aber auch dieses Wasser versickert die meiste Zeit vollständig auf dem kiesigen Schwemmkegel der Breitla (Station 5). Zum Schutz der Grünlandfläche Breitla vor Vermurung hat man ein Schotter-Auffangbecken angelegt. Unterhalb der Breitla setzt sich der Rohrbach als Krepbach fort, nachdem er starken Zulauf aus den Krepbach-Quellen erhalten hat. Diese nahe der Eibseestraße in der Bergsturzmasse gelegene Quellgruppe schüttet bis einige hundert Liter pro Sekunde; mit hoher Wahrscheinlichkeit handelt es sich hierbei in der Hauptsache um den unterirdischen Abfluss des Eibsees (Station 10).

Die am linken Ufer des Rohrbaches austretende Christlhüttenquelle diente in früherer Zeit zur Trinkwasserversorgung von Grainau. Wegen häufiger bakterieller Belastung ist diese Fassung seit dem Jahre 1977 aufgelassen. Ihre Schüttung schwankt zwischen 3 und 82 l/s (Durchschnitt 37 l/s). Die mittlere Wassertemperatur beträgt 7,2 °C. Vermutlich gelangt hier das im oberstromigen Abschnitt des Rohrbaches versickerte Wasser zum Wiederaustritt. Die Trinkwasserversorgung von Grainau erfolgt heute aus zwei Bohrbrunnen, welche den Grundwasserstrom erschließen, der die Krepbach- Quellen speist.

Text: Dipl.-Geol. Johann-Peter Orth

Station 7: Lärchwald

Der Name dieses Waldes rührt von den hier häufiger auftretenden Lärchen her. Durch Bewirtschaftung des Waldes ging der Lärchenbestand zurück; heute überwiegt die Fichte. Die Lärche (Larix decidua) liefert ein begehrtes, da haltbares und witterungsbeständiges (harzreiches) Bauholz. Eine Besonderheit ist, dass es sich hier um eine sehr robuste Lärchenart handelt, die an anderer Stelle nicht mehr vorkommt (autochthone Art). Die oft von Heidelbeer- Gestrüpp (Vaccinium myrtillus) überwucherten Bergsturz-Blöcke bilden eine reizvolle Szenerie. Im Verbreitungsgebiet der Bergsturz- Trümmermasse verhinderten das unruhige Kleinrelief und der flachgründige Boden eine landwirtschaftliche Nutzung. Deshalb blieben diese Flächen waldbestanden; sie werden forstwirtschaftlich genutzt (Staatswald). Der Bodentyp im Bereich der Bergsturzmasse ist im Allgemeinen als Moder-Rendzina, stellenweise gar nur als Rohhumus-Auflage anzusprechen. Es herrscht ein niedriger Entwicklungsgrad, der dem geologisch sehr jungen Alter des Bergsturzes entspricht.

Text: Dipl.-Geol. Johann-Peter Orth     

Station 8: Frenzl

Längliche Wiese inmitten der bewaldeten Bergsturz-Trümmermassen; im unteren Teil sehr flach, nach oben zunehmend steiler. Es besteht Analogie zum Talboden Obergrainauer Feld (Station 5): Einst floss hier der Rohrbach durch eine Depression der Bergsturzmasse, lagerte Schotter ab und glättete damit das unruhige Kleinrelief. Infolge einer Laufänderung des Baches wurde die Mulde zum Trockental.

An der Wegkehre über dem oberen Ende der Frenzl-Wiese lässt sich ein steiler Graben mit Bergsturz-Blöcken als Relikt des einstigen Bachbettes erkennen. Die ruhige Oberfläche der Aufschüttung im Frenzl und der (im Vergleich zur Trümmermasse) tiefgründige Boden ermöglichten eine landwirtschaftliche Nutzung. Gleiches gilt für die oberhalb (entlang der Eibseestraße) gelegene Wiese Auf dem Rohr, welche ebenfalls eine Aufschüttung des Rohrbaches darstellt.

Text: Dipl.-Geol. Johann-Peter Orth

Station 9: Radschuh

Die Passhöhe der Eibseestraße wird auch als Radschuh bezeichnet. Der Name dieses Ortes kommt daher, dass hier früher die Fuhrleute die Hinterräder ihrer Wagen vor der Talfahrt mit einem Bremsschuh versehen haben. Die Steilheit der Straße machte dies erforderlich.

Der Wanderweg zum Eibsee führt hier durch eine Ansammlung von Riesenblöcken. Diese bestehen aus Wettersteinkalk, und zwar aus Partien mit massiger Gesteinsausbildung. Solche kompakten Groß- Kluftkörper, die mechanisch widerstandsfähig waren, blieben beim Absturz relativ unbeschädigt, während geschichtete Partien – entsprechend ihrer jeweiligen Bankdicke – in kleinere bis kleinste Trümmer zerbrachen.

Die Bergsturzmasse ist generell durch ein extrem breites Korngrößenspektrum charakterisiert: von Riesenblöcken bis zum Gesteinsmehl. Das Trümmer-Haufwerk ist i. Allg. ungeschichtet; die Komponenten sind schlecht sortiert und eckig bis kantengerundet. Wie in Aufschlüssen zu beobachten, „schwimmen“ die großen Blöcke vielfach auf stärker zerkleinerten Blockmassen. Blöcke bis zur Größe eines kleinen Hauses finden sich im und neben dem Flussbett der Loisach, an der Bundesstraße 23 / Radweg Grainau—Griesen (Straßen-Kilometer 6–7).

Text: Dipl.-Geol. Johann-Peter Orth

Der Eibsee

Das Eibsee-Becken wird aufgefasst als eine von eiszeitlichen Gletschern ausgeschürfte Mulde, deren Überlaufschwelle durch Bergsturz überhöht wurde. Die Sturzmasse hat das ursprünglich größere Becken vor allem auf seiner Nord- und Ostseite teilweise verfüllt. Die Grunddaten des Sees, bezogen auf Mittelwasserstand, lauten: Wasserspiegelhöhe 973,3 m über NN, Oberfläche 1,774 km, Volumen 26,61 Mio. m3, maximale Tiefe 36 m. Die Längserstreckung beträgt 2,45 km, die größte Breite 0,85 km. Das Nordufer ist durch Buchten reich gegliedert. Im Nordteil des Sees liegen acht Inseln, die aus Bergsturzblöcken aufgebaut sind. Es werden folgende Teilbecken unterschieden: Weitsee (Hauptbecken), Untersee, Braxensee, Steingringpriel und Frillensee (die drei Letzteren durch Schwellen abgetrennt, doch spiegelgleich).

Aufgrund seiner Lage in einem oberflächenabflusslosen Becken (siehe unten) ist der Eibsee als Blindsee zu typisieren und weist hohe Wasserstandsschwankungen auf. Die Größt-Amplitude beträgt über 4 m. Die mittlere Schwankung im Jahresgang liegt bei 1,8 m, wobei das Minimum im März und der Hochpunkt im August erreicht wird. Das überaus niederschlagsreiche Jahr 1999 brachte einen Extremhochstand: Er lag etwa 2,2–2,5 m über dem Mittelwasserstand. Ein ungefähr gleich hoher Wert war bereits in den Jahren 1910 und 1965 erreicht worden. Der See weist an durchschnittlich 100–110 Tagen im Jahr Eisbedeckung auf: Die von den überragenden Höhen zugeströmte Kaltluft kann aus dem geschlossenen Becken nicht abfließen; es handelt sich um eine Kaltluftsenke.

Es sind keinerlei oberirdische Abflussmöglichkeiten gegeben; die niedrigste „Überlaufschwelle“ (nordöstlich des Untersees) liegt etwa 25–30 m über dem mittleren Seespiegel. Das Seebecken ist nach Osten durch einen Süd–Nord verlaufenden Rücken aus Bergsturzmasse gegen den Talraum von Grainau hin abgedämmt.

Text: Dipl.-Geol. Johann-Peter Orth                 

Station 10: Untersee

Der schmale Untersee ist vom Hauptbecken durch eine Schwelle getrennt, deren Scheitel bei Mittelwasserstand nur 0,6 m unter dem Seespiegel liegt und die bei Niedrigwasserstand trockenfällt. Über diese Schwelle aus Bergsturztrümmern führt der Steg des Seerundweges. Der unterirdische Abfluss des Eibsees findet im Untersee statt. Bei Niedrigwasserstand (wie im Sommer/Herbst 2003) lässt sich unter dem Steg beobachten, wie das Wasser vom Weitsee zum Untersee strömt bzw. die hoch durchlässige Schwelle auch unterirdisch quert.

Hydrologische Berechnungen des unterirdischen Abflusses aus dem Eibsee-Becken ergaben für niedrige Wasserstände etwa 300 l/s und für sehr hohe Wasserstände rund 800 l/s; der mittlere Abfluss wird auf 450 l/s geschätzt. Als Wiederaustritt des Seeabflusses kommen nur die rund 1,7 km nordöstlich des Untersees gelegenen Krepbachquellen mit ihren mutmaßlichen Folgeaustritten im Bereich von Grainau-Dorf in Betracht (Stationen 2, 4, 6).

Text: Dipl.-Geol. Johann-Peter Orth

Station 11: Steingringpriel (Fortsamtsseale)

Der Bergsturz hat den Nordteil des ursprünglichen Eibsee-Beckens teilweise verfüllt. Aufgrund des unruhigen Kleinreliefs der Trümmermasse ist das Nordufer durch Buchten reich gegliedert. Im Hinterland des Ufers liegen vier Kleinseen, die mit dem Hauptbecken in unterirdischer hydraulischer Verbindung stehen und deshalb stets dieselbe Wasserspiegelhöhe wie der Weitsee aufweisen; aus gleichem Grund schwankt ihr Wasserstand ebenso stark wie der des Weitsees. Wir stehen hier am größten und tiefsten dieser Kleinseen.

Text: Dipl.-Geol. Johann-Peter Orth         

Station 12: Wankle

Wankle bedeutet kleine Lichtung, genützt als Weidefläche. Der Ort liegt etwas oberhalb des Weges, wird heute nicht mehr beweidet und wächst deshalb mit Fichten allmählich zu.

Blick über den Eibsee auf die schroffen, massigen Steilwände des Zugspitz-Massives (rechts) und der daran anschließenden Waxenstein- Kette (links); die Wandflucht erreicht eine relative Höhe bis 1260 m. In Falllinie des Zugspitz-Gipfels liegt die viereckige Nische des Bayerischen Schneekares. Dort brach der gewaltige Bergsturz aus, dessen Ablagerungen die Landschaft des Raumes Eibsee— Grainau maßgeblich prägen (siehe Stationen 1, 3, 4, 7-11).

Im Fußbereich der Wandzone erscheint ein gebänderter, schrofiger, überwiegend von Latschen bewachsener Sockel, der an seiner Oberkante eine Verflachung (Bärenheimatkopf, links) aufweist, doch ebenfalls sehr steil bis über 400 Höhenmeter abbricht. Dieser Sockel besteht aus Alpinem Muschelkalk, der zweitältesten Gesteinseinheit des Wettersteingebirges. Er reicht, von links nach rechts flach ansteigend, im SW hinauf bis zum Ehrwalder Kopf (auf dem von dort abfallenden Grat die Stütze der Tiroler Zugspitz-Seilbahn). Es handelt sich um eine Folge geschichteter, bis etwa 500 m mächtiger Kalksteine; als Besonderheiten sind eine knollig-wellige Ausbildung (Wurstelbänke) sowie Lagen von grünem vulkanischem Tuff (Pietra verde) zu nennen. Zwischen Bärenheimatkopf und dem Großschuttkegel Riffelriss verläuft im Muschelkalk ein lang gestreckter Quellhorizont (siehe auch Station 6), dessen abstürzende Bäche man bis zum Eibsee herunter rauschen hört.

Dominierender Wandbildner des betrachteten Raumes ist der auf dem Muschelkalk-Sockel liegende Wettersteinkalk. Der sehr reine, nur im unteren Bereich partienweise dolomitische Kalkstein tritt teils in massiger (Schwammriffe), teils in bankiger Ausbildung (Algenrasen) auf. Seine Mächtigkeit erreicht im Zugspitzmassiv bis über 1000 m. Der Wettersteinkalk neigt zu Verkarstung und unterirdischer Entwässerung. Beim Bau des Zahnradbahn-Tunnels der Bayerischen Zugspitzbahn wurden Höhlen angeschnitten. Die Bedeutung des Wettersteinkalkes als Kluft- und Karstwasserleiter ist besonders augenfällig in der Höllentalklamm, wo das im Gesteinskörper fließende Wasser über zahllose Spalten und Röhren zutage tritt.

Das Paket aus Muschelkalk und Wettersteinkalk ist tektonisch über eine Serie jüngerer Gesteine geschoben (Station 16). Dabei handelt es sich in der Hauptsache um Kössener Schichten. Zufolge ihres hohen Tongehaltes verwittert diese Serie leicht und ist meist von Schutt überdeckt. Sie bildet den Untergrund im weiten Zugwald zwischen dem Eibsee und der Wandflucht.

Rechts, über dem SW-Ufer des Sees, erhebt sich der steile, schrofige NW-Abbruch der bewaldeten Törlen-Ebene (Blaue und Schwarze Wand). Er besteht aus brüchigem Hauptdolomit (Station 15), während die Ebene darüber in verkarstetem Plattenkalk ausgebildet ist.

Text: Dipl.-Geol. Johann-Peter Orth

Station 13: Seeberg-Quellen

Zwischen der letzten Station und hier zeigten sich bergseits des Weges einige schwache Austritte aus lehmig verwitterter Grundmoräne. Solche eiszeitlichen Gletscher-Ablagerungen, die den Felsuntergrund vielerorts flächenhaft überdecken, sind durch ein extrem breites Korngrößenspektrum (von Blöcken bis zum Ton) gekennzeichnet und wirken wegen ihres hohen Feinkorngehaltes (zerriebenes Gestein) oft wasserstauend. Als während der Würm- Eiszeit die Vergletscherung vor etwa 20.000 Jahren ihren Höchststand erreichte, betrug die Mächtigkeit des Eises an dieser Stelle rund 600 m.

Hier am bergseitigen Steilhang liegt ein kleiner Quellbezirk: oben Hochwasser-, unten Niedrigwasser-Austritte aus Spaltenkarst. Als Wasserstauer in dem zerrütteten Kalkstein wirkt eine von links oben nach rechts unten abfallende, rund 0,2 m mächtige Zwischenlage von dunklem Mergel. Es handelt sich hier um einen kleinen Fleck von Kössener Schichten (Station 16) auf verkarstetem Plattenkalk- Untergrund.

Text: Dipl.-Geol. Johann-Peter Orth

Station 14: Koatbach

Hier, am NW-Ende des Sees, mündet einer der wenigen oberirdischen Zuläufe mit ganzjähriger Wasserführung ein. Das Gestein, im Graben Kaskaden und einen kleinen Wasserfall bildend, ist dünnbankiger Plattenkalk in steiler Lagerung. Der Bach nimmt seinen Anfang im Gern-Mösl, einer moorigen Ebene in einem Sattel (1270 m über NN) zwischen Eibsee-Becken und Loisachtal. Er bildet in der Uferbucht einen flachen, kiesigen Schwemmkegel, im See selbst ein Delta mit flachem Böschungswinkel (dieser ist ein Ergebnis der hohen Wasserstandsschwankungen des Sees) und schlammiger Oberfläche.

Text: Dipl.-Geol. Johann-Peter Orth            

Station 15: Beim stinkenden Wasser

Die ungeklärte Bezeichnung des Ortes geht möglicherweise auf eine Schwefelwasserstoff (H2S) enthaltende, wie faule Eier riechende Quelle zurück. Solche Austritte sind im Zusammenhang mit Vorkommen von Sulfatgestein (Anhydrit, Gips) von einigen Stellen der Bayerischen Alpen bekannt. Durch Bakterien erfolgt eine Reduktion des Sulfates zu Sulfid.

Der Eibsee-Rundweg quert dort auf über 1 km Strecke eine steile Hangschutt-Halde. Die den Weg kreuzenden Bäche weisen unter normalen Verhältnissen geringe Wasserführung auf oder liegen gar trocken; bei hohem Abfluss führen sie jedoch reichlich Schutt mit, so dass es nicht selten zur Vermurung des Weges kommt. Der Schutt entstammt der unmittelbar darüber gelegenen schrofigen Wandflucht (Station 12). Lieferant ist der Hauptdolomit, eine monotone Folge von Dolomitsteinen; im oberen Abschnitt treten Kalksteinbänke auf, die den Faziesübergang zum Plattenkalk anzeigen. Der Hauptdolomit stellt das neben dem Wettersteinkalk bedeutendste Gestein des betrachteten Raumes dar. Er bildet den Sockel des Eibsee-Plateaus und baut (zum wesentlichen Teil) die Höhenrücken im Westen und Norden des Sees auf. Seine Mächtigkeit beträgt im hiesigen Gebiet 800–1000 m. Charakteristisch ist die intensive Zerklüftung des Gesteins, die die typische Brüchigkeit verursacht und zu kantigkleinstückigem Zerfall führt. Deshalb dominiert im Hauptdolomit Schrofengelände und es fallen beträchtliche Schuttmassen an.

Text: Dipl.-Geol. Johann-Peter Orth

Station 16: Weiherkopf

Hier, fast 50 Höhenmeter über dem felsigen Süd-Ufer des Sees, besteht ein auffallender Unterschied zur vorherigen steilen, meist trockenen Schutthalde: flacheres Gelände, dichter Bewuchs, feuchte Lehmböden, zahlreiche Quellen und Wasserläufe. Ursache hierfür ist das Auftreten tonreicher, leicht verwitternder, wasserstauender Gesteine: am Weg Kössener Schichten, zwischen Weg und Seeufer Malm- und Neokom-Aptychenschichten (siehe auch Station 12). Der Untergrund ist sehr labil (siehe unten), so dass an einer Stelle schon der gesamte Weg abrutschte.

Bei den Kössener Schichten handelt es sich um eine Wechselfolge von Kalken und Mergeln. Kennzeichnend ist der hohe Reichtum an Fossilien, vor allem an Muscheln und Brachiopoden. Das stets vorkommende Mineral Pyrit (FeS2) verursacht nach Oxidation zu Eisen-III-Verbindungen die für die Kössener Schichten ebenfalls typische gelbliche bis rostbraune Anwitterungsfarbe. Aus der Verwitterung der Mergel gehen mächtige Lehmdecken hervor. Ihr hoher Tongehalt bedingt die charakteristischen hydrologischen und geomorphologischen Merkmale der Kössener Schichten: Sie fungieren als Wasserstauer, was zum Auftreten vieler kleinerer Quellen und (in flacheren Lagen) zu Versumpfung führt. In Hanglage besitzen sie starke Neigung zu Blaikenbildung und zu Rutschungen. Das Gestein ist meist von Schutt überdeckt und nur fleckenhaft aufgeschlossen. Seine Mächtigkeit beträgt im betrachteten Gebiet 180–200 m.

Die Aptychenschichten des Malms bestehen aus dünnbankigen bunten Kalken, die des Neokoms aus grüngrauen Mergelkalken und Mergeln. Erstere bilden Schrofengelände und in Gräben Wasserfallstufen, Letztere Ausraumzonen mit sumpfigen Lehmböden (Wasserstauer). Die Mächtigkeit dieser Gesteinsserien beträgt am Eibsee-Südufer jeweils 15 m. Bildungsraum war in beiden Fällen die küstenferne Tiefsee.

Text: Dipl.-Geol. Johann-Peter Orth

Station 17: Schöngänge

Hier liegt ein ausgedehnter Schwemmkegel, der sich als Delta in den See vorgebaut hat. Über eine Länge von rund 400 m findet sich breiter, glatter Kies-Strand mit konvexer Uferlinie. Die Komponenten des Kieses bestehen aus hellem Wettersteinkalk und sind kantenrund bis leicht gerundet. Der Bachlauf, der diese Schotter- Ablagerung aufgeschüttet hat, fehlt heute. Von der Spitze des Schwemmkegels führt ein Trockental über die ehemalige Seealm hinauf bis zum Fuß der hohen Wandflucht unter dem Bayerischen Schneekar (darin verläuft die Skipiste Riffelriss–Eibsee). Vermutlich waren es Starkregen-Ereignisse katastrophalen Ausmaßes, die den Abgang riesiger Muren aus den Wänden herunter bis zum See ausgelöst haben. Die Bergsturz-Trümmermassen wurden dabei überschüttet. Die Existenz von schottergefülltem Trockental und Schwemmkegel weist auf Klimabedingungen (nach dem Bergsturz- Ereignis, also in den letzten 3700 Jahren) hin, die sich von den heutigen deutlich unterscheiden.

Text: Dipl.-Geol. Johann-Peter Orth               

Station 18: Frillensee

Der Name des Sees rührt von Frille oder Elritze (Phoxinus phoxinus) her, einem kleinen Süßwasser-Fisch. Das Ufer des bei mittlerem Wasserstand maximal rund 5 m tiefen Sees wird weitestgehend aus Bergsturz-Blöcken gebildet; nur im jenseitigen Südost-Zipfel des Sees erscheint eine helle Kiesbank, wobei es sich um Schotter handelt, der von einem kleinen Bach aufgeschüttet wurde (vergleiche Station 17). Zur Entstehung und Hydrologie des Sees gilt analog das bei Station 11 Mitgeteilte: Der Bergsturz hat den See vom ursprünglichen Eibsee-Becken abgetrennt. Wie bei den Kleinseen am Nordufer des Eibsees steht der Frillensee mit dem Hauptbecken in unterirdischer hydraulischer Verbindung und weist deshalb stets dieselbe Wasserspiegelhöhe wie der Eibsee auf; aus gleichem Grund variiert sein Wasserstand ebenso stark wie der des Eibsees.

Text: Dipl.-Geol. Johann-Peter Orth                

Infomaterialien

agsdi-file-pdf

Grainau

Broschüre „Geologische Wanderung durch Grainau“